家纺在线
家纺在线
家纺在线 > 家纺资讯 > 红豆Live推荐算法中召回和排序的应用和策略

红豆Live推荐算法中召回和排序的应用和策略

红豆 

原标题:红豆Live推荐算法中召回和排序的应用和策略

有人曾说“语音直播产品红豆 Live 的突然出现,让沉寂了一段时间的语音知识付费市场又重新燃起了生机”,让语音直播这个小众市场重新吸引了大众的注意力,让声音爱好者找到知音和志同道合之友。但红豆 Live 也用了 AI 这个事实,你知道吗?用到了哪些 AI 技术?推荐算法如何帮助它在众多语音直播产品中脱颖而出?对有意采用 AI 技术的公司有何启示?InfoQ 将在这篇文章中揭开这些问题的答案。

InfoQ 编辑对微博机器学习计算和服务平台负责人胡南炜进行了采访,询问了关于微博旗下的语音直播平台——红豆 Live 应用 AI 技术的详细情况,以及他对 AI 的深入了解和趋势预测。

据该产品官网数据显示,2017 年 1 月,红豆 Live 面向大众全面开放,KOL 入驻量达 5000+,主播总数量 4 万人,开启了一个全民语音直播的时代。而这款产品的成功,按照该公司的说法,是“AI 发挥的作用不可忽略”。那么,红豆 Live 中究竟采用了哪些 AI 技术?这家公司在 AI 技术方面是否有着深远的布局呢?

从技术层面讲,红豆 Live 在 AI 领域使用了语音识别、推荐排序等深度学习技术;其中在推荐排序中红豆 Live 经历了三次算法迭代,从协同过滤到基于内容的推荐,最后到基于音频谱图隐藏特征的深度学习预测模型的演进。“每次的算法迭代都是为了解决用户发现更多优质主播以及提高语音直播内容传播的目标。”胡南炜说道。

众所周知,企业采用 AI 技术需要高昂的成本,在采用这些技术后究竟能产生多大的效果,这是人们非常关心的问题。胡南炜表示,红豆 Live 的推荐模型目标是发现更多主播、用户留存、平均收听时长 3 项。在应用深度学习预测模型后,从数据表现上,该平台的主播发现率较人工运营时提高了 135%,用户留存率提升 20%,平均收听时长增长 80%。这款产品在应用 AI 后三个重要指标均有较大上涨,因此可以说,深度学习模型对于其业务是有着明显影响的。

语音直播相对来说受众数量较小,那这类产品靠什么来吸引用户呢?胡南炜认为,虽然语音直播受众数量较小,但确实有效解决了一部分垂直用户的痛点需求。在他看来,直播主要可以满足用户两个方面的需求:娱乐需求和价值需求。顾名思义,娱乐需求是指人们对于娱乐的追求以获得精神满足,直播等视听感受结合的形式可以满足大众的娱乐需求;而满足价值需求,是指直播能给用户带来专业的知识、实用的技能、思路的启发等具有实际意义的东西,解决现实问题。在这方面,他认为语音直播更具优势。另外,音频直播可以更好的将用户的注意力聚焦在内容本身上并降低直播成本,AI 可以帮助忠粉和垂直用户更便利、更有针对性的获取到自己所喜欢的语音内容,从而解决内容获取的痛点。

推荐系统的技术支持详情

推荐系统的成功离不开背后的技术支持,而部署 AI 更需要强大的技术来做支撑。

红豆 live 推荐系统中使用 CNN+LSTM 用在标签服务里面,把直播间中一些隐藏特征自动化的提取、关联、抽象出来,准备率比起传统机器学习算法大大提高。在 Wide & Deep 排序中,使用宽深度学习网络结合 LR,不仅仅使特征工程的工作量工程量大为降低,而且排序模型的记忆能力和泛化能力比单独使用 LR 提高不少。”从中我们可以看到,推荐系统的算法支持使得红豆 Live 的业务能力显著提高。

然而,没有任何算法是完美无缺的。“红豆 Live 推荐系统主要的缺陷是,推荐系统中的冷启动问题。对于新用户,我们无法获取他们的行为日志和 query 日志。“而针对这个问题,他们有弥补的方法,”因为红豆 live 用户和微博用户重合度为 90%,可以利用该用户的微博兴趣标签,解决用户的冷启动问题。”胡南炜说道。

关键技术召回和排序的作用和策略

红豆 Live 推荐系统中的两个关键技术分别是召回和排序,其中在召回层用到的策略,是基于 item 的协同过滤,基于用户 query 的 CTR 进行召回,和基于用长短期兴趣的进行召回。而在排序层,则使用 Wide & Deep 网络,主要基于召回层的 item 进行融合、排序,最终选出 top N 个 item 推荐用户。

召回层的作用在于根据用户的不同兴趣,从海量 item 中选出数百个用户感兴趣的 item。而排序层的作用则是基于用户的一些特征,对召回层的 item 再次进行打分排序,更精准地选出用户感兴趣的 item。

此外,胡南炜还为我们揭示了红豆 Live 推荐算法的具体工作流程:

第一,对用户的行为日志进行利用 JStorm 实时收集,并定时更新基于 item 的协同过滤内容。

第二,对直播间内容进行利用 JStorm 实时收集,实时为直播间打上分类标签、topic、主题词等标签,并定时更新用户画像内容。

最后,当用户进行刷新时,利用召回策略进行召回,再根据排序策略选择 top N 呈现给用户。

AI 识别“少儿不宜”内容准确率提高

“三俗”内容识别一直是正规内容平台严格把关的方面,AI 能够在这一方面发挥更大的作用。红豆 Live 由于采用了可以提取更丰富特征的新算法,对\

  • 评论文章
  • 加盟咨询
对此页面内容评分及收藏
评分:
微博:
图文资讯